113 research outputs found

    General CMB and Primordial Bispectrum Estimation I: Mode Expansion, Map-Making and Measures of f_NL

    Full text link
    We present a detailed implementation of two bispectrum estimation methods which can be applied to general non-separable primordial and CMB bispectra. The method exploits bispectrum mode decompositions on the domain of allowed wavenumber or multipole values. Concrete mode examples constructed from symmetrised tetrahedral polynomials are given, demonstrating rapid convergence for known bispectra. We use these modes to generate simulated CMB maps of high resolution (l > 2000) given an arbitrary primordial power spectrum and bispectrum or an arbitrary late-time CMB angular power spectrum and bispectrum. By extracting coefficients for the same separable basis functions from an observational map, we are able to present an efficient and general f_NL estimator for a given theoretical model. The estimator has two versions comparing theoretical and observed coefficients at either primordial or late times, thus encompassing a wider range of models, including secondary anisotropies, lensing and cosmic strings. We provide examples and validation of both f_NL estimation methods by direct comparison with simulations in a WMAP-realistic context. In addition, we show how the full bispectrum can be extracted from observational maps using these mode expansions, irrespective of the theoretical model under study. We also propose a universal definition of the bispectrum parameter F_NL for more consistent comparison between theoretical models. We obtain WMAP5 estimates of f_NL for the equilateral model from both our primordial and late-time estimators which are consistent with each other, as well as with results already published in the literature. These general bispectrum estimation methods should prove useful for the analysis of nonGaussianity in the Planck satellite data, as well as in other contexts.Comment: 41 pages, 17 figure

    Constraining Variations in the Fine Structure Constant in the presence of Early Dark Energy

    Get PDF
    We discuss present and future cosmological constraints on variations of the fine structure constant α\alpha induced by an early dark energy component having the simplest allowed (linear) coupling to electromagnetism. We find that current cosmological data show no variation of the fine structure constant at recombination respect to the present-day value, with α\alpha / α0\alpha_0 = 0.975 \pm 0.020 at 95 % c.l., constraining the energy density in early dark energy to Ωe\Omega_e < 0.060 at 95 % c.l.. Moreover, we consider constraints on the parameter quantifying the strength of the coupling by the scalar field. We find that current cosmological constraints on the coupling are about 20 times weaker than those obtainable locally (which come from Equivalence Principle tests). However forthcoming or future missions, such as Planck Surveyor and CMBPol, can match and possibly even surpass the sensitivity of current local tests.Comment: 5 pages, 3 figure

    A high performance cost-effective digital complex correlator for an X-band polarimetry survey

    Get PDF
    The detailed knowledge of the Milky Way radio emission is important to characterize galactic foregrounds masking extragalactic and cosmological signals. The update of the global sky models describing radio emissions over a very large spectral band requires high sensitivity experiments capable of observing large sky areas with long integration times. Here, we present the design of a new 10 GHz (X-band) polarimeter digital back-end to map the polarization components of the galactic synchrotron radiation field of the Northern Hemisphere sky. The design follows the digital processing trends in radio astronomy and implements a large bandwidth (1 GHz) digital complex cross-correlator to extract the Stokes parameters of the incoming synchrotron radiation field. The hardware constraints cover the implemented VLSI hardware description language code and the preliminary results. The implementation is based on the simultaneous digitized acquisition of the Cartesian components of the two linear receiver polarization channels. The design strategy involves a double data rate acquisition of the ADC interleaved parallel bus, and field programmable gate array device programming at the register transfer mode. The digital core of the back-end is capable of processing 32 Gbps and is built around an Altera field programmable gate array clocked at 250 MHz, 1 GSps analog to digital converters and a clock generator. The control of the field programmable gate array internal signal delays and a convenient use of its phase locked loops provide the timing requirements to achieve the target bandwidths and sensitivity. This solution is convenient for radio astronomy experiments requiring large bandwidth, high functionality, high volume availability and low cost. Of particular interest, this correlator was developed for the Galactic Emission Mapping project and is suitable for large sky area polarization continuum surveys. The solutions may also be adapted to be used at signal processing subsystem levels for large projects like the square kilometer array testbeds

    Early evolution of galaxies and of large-scale structure from CMB experiments

    Full text link
    Next generation CMB experiments with arcmin resolution will, for free, lay the foundations for a real breakthrough on the study of the early evolution of galaxies and galaxy clusters, thanks to the detection of large samples of strongly gravitationally lensed galaxies and of proto-clusters of dusty galaxies up to high redshifts. This has an enormous legacy value. High resolution follow-up of strongly lensed galaxies will allow the direct investigation of their structure and kinematics up to z~6, providing direct information on physical processes driving their evolution. Follow-up of proto-clusters will allow an observational validation of the formation history of the most massive dark matter halos up to z~4, well beyond the redshift range accessible via X-ray or SZ measurements. These experiments will also allow a giant leap forward in the determination of polarization properties of extragalactic sources, and will provide a complete census of cold dust available for star formation in the local universe.Comment: Science white paper submitted to the Astro2020 US Decadal Surve

    Python I, II, and III CMB Anisotropy Measurement Constraints on Open and Flat-Lambda CDM Cosmogonies

    Full text link
    We use Python I, II, and III cosmic microwave background anisotropy data to constrain cosmogonies. We account for the Python beamwidth and calibration uncertainties. We consider open and spatially-flat-Lambda cold dark matter cosmogonies, with nonrelativistic-mass density parameter Omega_0 in the range 0.1--1, baryonic-mass density parameter Omega_B in the range (0.005--0.029) h^{-2}, and age of the universe t_0 in the range (10--20) Gyr. Marginalizing over all parameters but Omega_0, the combined Python data favors an open (spatially-flat-Lambda) model with Omega_0 simeq 0.2 (0.1). At the 2 sigma confidence level model normalizations deduced from the combined Python data are mostly consistent with those drawn from the DMR, UCSB South Pole 1994, ARGO, MAX 4 and 5, White Dish, and SuZIE data sets.Comment: 20 pages, 7 figures, accepted by Ap
    • …
    corecore